Theo Tổng cục dân số, Việt Nam đã chạm đỉnh dân số vàng và bước vào thời kỳ già hóa dân số với tốc độ nhanh thuộc top đầu thế giới. Nếu như cách đây 10 năm, số người trên 60 tuổi chiếm gần 10% dân số thì hơn 30 năm nữa, tỷ lệ này có thể chạm mốc 25%. Già hóa dẫn đến nhiều vấn đề sức khỏe như suy giảm thể chất và các bệnh mãn tính. Tai nạn, đặc biệt là ngã gãy xương, rất phổ biến và là một trong 5 nguyên nhân gây tử vong ở người cao tuổi. Tổ chức Y tế thế giới (WHO) cũng cho biết hàng năm có khoảng 28-35% người có độ tuổi trên 65 bị ngã gây tổn hại đến sức khỏe và tỷ lệ này tăng nhanh đến 32-42% đối với nhóm người trên 70 tuổi.
Cùng với đó, những năm qua Việt Nam có xu hướng chuyển sang mô hình gia đình hạt nhân, khiến nhiều cặp vợ chồng người cao tuổi phải sống cô đơn hoặc chỉ còn cụ ông/cụ bà sống cùng gia đình trẻ bận rộn. Đối mặt với sức khỏe yếu và ít được theo dõi sát sao, người già gặp rất nhiều nguy hiểm khi đột quỵ hoặc té ngã mà không được phát hiện kịp thời.
Trước thực tế này, PGS.TS Lê Thanh Hà cùng các cộng sự tại Trường đại học Công nghệ, ĐHQGHN đã quyết định phát triển một thuật toán phân tích hình ảnh camera giúp tự động giám sát và phát hiện người ngã, từ đó lập tức đưa ra tín hiệu báo động đến một ứng dụng để người giám hộ kịp thời cấp cứu. Hệ thống này không chỉ dễ dàng lắp đặt trong gia đình mà còn có thể phổ biến ngay tại các bệnh viện hoặc cơ sở chăm sóc người cao tuổi giúp giảm tải việc theo dõi cho các bác sĩ, y tá.
PGS.TS Lê Thanh Hà cho biết, nhóm nghiên cứu đã sử dụng một camera thông thường Full HD 1080P gắn với bộ máy tính bo mạch cấu hình thấp Raspberry Pi có kích thước chỉ bằng một tấm thẻ và chi phí tầm vài chục USD để thu thập và xử lý dữ liệu ngay trên thiết bị. Trong môi trường ánh sáng tốt, kết quả thử nghiệm với bộ dữ liệu chuẩn gồm 50 mẫu video với nhiều điều kiện ngã khác nhau cho độ chính xác khoảng 90%.
Với mục tiêu tạo ra một hệ thống phổ biến nhất với bối cảnh Việt Nam, nhóm nghiên cứu đã lựa chọn sử dụng dữ liệu chỉ từ một máy quay camera. Mặc dù nếu sử dụng nhiều camera kết hợp cảm biến sẽ cho ra kết quả tốt hơn nhưng phương án này khó khả thi khi triển khai với số lượng lớn.
Bên cạnh đó, bài toán phân tích hình ảnh phát hiện người ngã thường có khối lượng tính toán lớn và phức tạp, do vậy nhóm nghiên cứu phải tìm ra những kỹ thuật “đủ đơn giản nhưng thông minh” để tối ưu hóa tính toán trên chính các thiết bị đầu cuối cấu hình thấp mà không phải phụ thuộc vào một hệ thống tính toán hiệu năng cao bên ngoài.
Với các ảnh liên tiếp nhau, về cơ bản đối tượng trong ảnh phần lớn giống nhau (trừ tình huống chuyển cảnh), chỉ khác nhau do vị trí của nó bị xê dịch. Do vậy khi phân tích, các nhà nghiên cứu của Trường đại học Công nghệ đã sử dụng kỹ thuật vector motion – tức tách những vùng chuyển động so với “nền”, gọi là vector, và phân tích các đặc trưng về chuyển động và hình dáng cơ thể.
Nhìn chung, tai nạn ngã xảy ra trong thời gian ngắn từ 0,45 đến 0,85 giây trong đó người bị ngã thay đổi rất nhiều về tư thế và hình dạng. Những thay đổi đột ngột này rất quan trọng để xác định xem liệu cú ngã có xảy ra hay không.
Nhờ thiết lập các đường elip bao quanh đối tượng và xem xét lịch sử chuyển động của đối tượng trên nhiều khung hình liên tiếp, thuật toán sẽ phát hiện những thay đổi về di chuyển và góc của hình elip trong suốt quá trình trước, trong và sau khi ngã nhằm phát hiện tai nạn. Các kĩ thuật xử lý nhiều khung hình song song cũng được áp dụng nhằm tăng tốc độ tính toán, đáp ứng thời gian thực.
Theo VietQ